1,739 research outputs found

    Pharmacokinetic/Pharmacodynamic Correlation of Cefquinome Against Experimental Catheter-Associated Biofilm Infection Due to Staphylococcus aureus.

    Get PDF
    Biofilm formations play an important role in Staphylococcus aureus pathogenesis and contribute to antibiotic treatment failures in biofilm-associated infections. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) profiles of cefquinome against an experimental catheter-related biofilm model due to S. aureus, including three clinical isolates and one non-clinical isolate. The minimal inhibitory concentration (MIC), minimal biofilm inhibitory concentration (MBIC), biofilm bactericidal concentration (BBC), minimal biofilm eradication concentration (MBEC) and biofilm prevention concentration (BPC) and in vitro time-kill curves of cefquinome were studied in both planktonic and biofilm cells of study S. aureus strains. The in vivo post-antibiotic effects (PAEs), PK profiles and efficacy of cefquinome were performed in the catheter-related biofilm infection model in murine. A sigmoid E max model was utilized to determine the PK/PD index that best described the dose-response profiles in the model. The MICs and MBICs of cefquinome for the four S. aureus strains were 0.5 and 16 μg/mL, respectively. The BBCs (32-64 μg/mL) and MBECs (64-256 μg/mL) of these study strains were much higher than their corresponding BPC values (1-2 μg/mL). Cefquinome showed time-dependent killing both on planktonic and biofilm cells, but produced much shorter PAEs in biofilm infections. The best-correlated PK/PD parameters of cefquinome for planktonic and biofilm cells were the duration of time that the free drug level exceeded the MIC (fT > MIC, R (2) = 96.2%) and the MBIC (fT > MBIC, R (2) = 94.7%), respectively. In addition, the AUC24h/MBIC of cefquinome also significantly correlated with the anti-biofilm outcome in this model (R (2) = 93.1%). The values of AUC24h/MBIC for biofilm-static and 1-log10-unit biofilm-cidal activity were 22.8 and 35.6 h; respectively. These results indicate that the PK/PD profiles of cefquinome could be used as valuable guidance for effective dosing regimens treating S. aureus biofilm-related infections

    Identifying and analyzing the key genes shared by papillary thyroid carcinoma and Hashimoto’s thyroiditis using bioinformatics methods

    Get PDF
    BackgroundHashimoto’s thyroiditis (HT) is a chronic autoimmune disease that poses a risk factor for papillary thyroid carcinoma (PTC). The present study aimed to identify the key genes shared by HT and PTC for advancing the current understanding of their shared pathogenesis and molecular mechanisms.MethodsHT- and PTC-related datasets (GSE138198 and GSE33630, respectively) were retrieved from the Gene Expression Omnibus (GEO) database. Genes significantly related to the PTC phenotype were identified using weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) were identified between PTC and healthy samples from GSE33630, and between HT and normal samples from GSE138198. Subsequently, functional enrichment analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Transcription factors and miRNAs regulating the common genes in PTC and HT were forecasted using the Harmonizome and miRWalk databases, respectively, and drugs targeting these genes were investigated using the Drug-Gene Interaction Database (DGIdb). The key genes in both GSE138198 and GSE33630 were further identified via Receiver Operating Characteristic (ROC) analysis. The expression of key genes was verified in external validation set and clinical samples using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC).ResultsIn total, 690 and 1945 DEGs were associated with PTC and HT, respectively; of these, 56 were shared and exhibited excellent predictive accuracy in the GSE138198 and GSE33630 cohorts. Notably, four genes, Alcohol Dehydrogenase 1B (ADH1B), Active BCR-related (ABR), alpha-1 antitrypsin (SERPINA1), and lysophosphatidic acid receptor 5 (LPAR5) were recognized as key genes shared by HT and PTC. Subsequently, EGR1 was identified as a common transcription factor regulating ABR, SERPINA1, and LPAR5 expression. These findings were confirmed using qRT-PCR and immunohistochemical analysis.ConclusionFour (ADH1B, ABR, SERPINA1, and LPAR5) out of 56 common genes exhibited diagnostic potential in HT and PTC. Notably, this study, for the first time, defined the close relationship between ABR and HT/PTC progression. Overall, this study provides a basis for understanding the shared pathogenesis and underlying molecular mechanisms of HT and PTC, which might help improve patient diagnosis and prognosis

    Distinct roles of NMB and GRP in itch transmission

    Get PDF
    A key question in our understanding of itch coding mechanisms is whether itch is relayed by dedicated molecular and neuronal pathways. Previous studies suggested that gastrin-releasing peptide (GRP) is an itch-specific neurotransmitter. Neuromedin B (NMB) is a mammalian member of the bombesin family of peptides closely related to GRP, but its role in itch is unclear. Here, we show that itch deficits in mice lacking NMB or GRP are non-redundant and Nmb/Grp double KO (DKO) mice displayed additive deficits. Furthermore, both Nmb/Grp and Nmbr/Grpr DKO mice responded normally to a wide array of noxious stimuli. Ablation of NMBR neurons partially attenuated peripherally induced itch without compromising nociceptive processing. Importantly, electrophysiological studies suggested that GRPR neurons receive glutamatergic input from NMBR neurons. Thus, we propose that NMB and GRP may transmit discrete itch information and NMBR neurons are an integral part of neural circuits for itch in the spinal cord

    Polymer-protein conjugate particles with biocatalytic activity for stabilization of water-in-water emulsions

    Get PDF
    Water-in-water (w/w) emulsions are attractive micro-compartmentalized platforms due to their outstanding biocom-patibility. To address the main disadvantage of poor stability that hampers their practical application, here we report a novel type of polymer-protein conjugate emulsifier obtained by Schiff base synthesis to stabilize w/w emulsions. In par-ticular, the proposed mild approach benefits the modification of proteins of suitable size and wettability as particulate emulsifiers retaining their bioactivity. As demonstrated in a model system, the methoxy polyethylene glycol (mPEG)-urease conjugate particles anchor at the w/w interfaces, where they serve as an effective emulsifier-combined-catalyst and catalyze the hydrolysis of urea in water to ammonium carbonate. Our study is unique in that it employs bioactive particles to stabilize w/w emulsions. Considering the characteristics of all-aqueous, compartmental and interfacial bio-catalysis of the system, it will open up new possibilities in the life sciences

    A novel approach for 25-gauge transconjunctival sutureless vitrectomy to evaluate vitreous substitutes in rabbits

    Get PDF
    AIM: To improve the standard three-port vitrectomy for establishing and evaluating an endotamponade model in rabbits. METHODS: Three ports were prepared near the third eyelid of rabbits, and the infusion port was placed at the inferior nasal quadrant with the inserted cannula linking with a self-designed handheld rigid infusion catheter. All right eyes of rabbits underwent a modified 25-gauge vitrectomy and were subsequently filled with balanced salt solution, silicone oil, and eight-arm polyethylene glycols (8-arm PEGs) hydrogel separately for comparison. Ophthalmic examinations were performed regularly to record the changes after the surgery. RESULTS: Successful vitrectomy was achieved among 44 chinchilla rabbits. The mean operation time was 4.51±1.25min. Four eyes (9.1%) presented limited lens touch and two eyes (4.5%) showed retinal touch during surgery. Incision leakage was found in three eyes (6.8%) after surgery. There was no endophthalmitis, hemorrhage, or retinal detachment during the observation period and ophthalmic examinations after the implantation of vitreous substitutes. CONCLUSION: The modified technique of the standard vitrectomy applied in the endotamponade model in rabbits shows excellent safety and practicality

    Complete sequence of the FII plasmid p42-2, carrying blaCTX-M-55, oqxAB, fosA3, and floR from Escherichia coli

    Get PDF
    We sequenced a novel conjugative multidrug resistance IncF plasmid, p42-2, isolated from Escherichia coli strain 42-2, previously identified in China. p42-2 is 106,886 bp long, composed of a typical IncFII-type backbone (∼54 kb) and one distinct acquired DNA region spanning ∼53 kb, harboring 12 antibiotic resistance genes [blaCTX-M-55, oqxA, oqxB, fosA3, floR, tetA(A), tetA(R), strA, strB, sul2, aph(3′)-II, and ΔblaTEM-1]. The spread of these multidrug resistance determinants on the same plasmid is of great concern and, because of coresistance to antibiotics from different classes, is therapeutically challenging

    Pickering emulsion-enhanced interfacial biocatalysis: tailored alginate microparticles act as particulate emulsifier and enzyme carrier

    Get PDF
    A robust Pickering emulsion stabilized by lipase-immobilized alginate gel microparticles with a coating of silanized titania nanoparticles is developed for biphasic biocatalysis. The good recyclability and high stability of the proposed interfacial catalysis system have been verified, retaining about 90% of relative enzyme activity in 10 catalytic cycles with operation for 240 h. Meanwhile the Pickering emulsions remain stable during a storage time of one year. The green system can be widely applied to construct powerful platforms for enzyme or microorganism-driven interfacial catalysis
    • …
    corecore